Modeling Sonic Logs in Oil Wells: A Comparison of Neural Networks Ensembles and Kernel Methods
نویسنده
چکیده
Oil well logs are frequently used to determine the mineralogy and physical properties of potential reservoir rocks, and the nature of the fluids they contain. Recently we reported an exploratory use of neural network ensembles for modeling these records. We showed that ensembles are clearly superior to linear multivariate regression as modeling technique, revealing an underlying nonlinear functional dependency between the correlated variables. In this work we use kernel methods to develop nonlinear local models relating Sonic logs (transit time of compressional waves) with other commonly measured properties (Resistivity and Natural Formation Radioactivity Level or Gamma Ray log). The kernel considered is conceptually simple and numerically robust, and allows to obtain the same performance as neural networks ensembles on this task.
منابع مشابه
Application of artificial neural networks for the prediction of carbonate lithofacies, based on well log data, Sarvak Formation, Marun oil field, SW Iran
Lithofacies identification can provide qualitative information about rocks. It can also explain rock textures which are importantcomponents for hydrocarbon reservoir description Sarvak Formation is an important reservoir which is being studied in the Marun oilfield, in the Dezful embayment (Zagros basin). This study establishes quantitative relationships between digital well logs data androutin...
متن کاملDevelopment of an Intelligent System to Synthesize Petrophysical Well Logs
Porosity is one of the fundamental petrophysical properties that should be evaluated for hydrocarbon bearing reservoirs. It is a vital factor in precise understanding of reservoir quality in a hydrocarbon field. Log data are exceedingly crucial information in petroleum industries, for many of hydrocarbon parameters are obtained by virtue of petrophysical data. There are three main petrophysical...
متن کاملEstimation of Total Organic Carbon from well logs and seismic sections via neural network and ant colony optimization approach: a case study from the Mansuri oil field, SW Iran
In this paper, 2D seismic data and petrophysical logs of the Pabdeh Formation from four wells of the Mansuri oil field are utilized. ΔLog R method was used to generate a continuous TOC log from petrophysical data. The calculated TOC values by ΔLog R method, used for a multi-attribute seismic analysis. In this study, seismic inversion was performed based on neural networks algorithm and the resu...
متن کاملThe Modeling and Comparison of GMDH and RBF Artificial Neural Networks in Forecasting Consumption of Petroleum Products in the Agricultural Sector
Energy plays a significant role in today's developing societies. The role of energy demands to make decisions and policy with regard to its production, distribution, and supply. The vital importance of energy, especially fossil fuels, is a factor affecting agricultural production. This factor has a great influence on the production of agricultural products in Iran. The forecast of the con...
متن کاملInvestigation of reservoir quality of the Kangan Formation based on petrographic and petrophysical studies: A case study of wells "A" and "B" in the gas field of the Tabnak Anticline, SW Iran
The Kangan Formation (Early Triassic) is one of the most important gas reservoirs in the Zagros fold-thrust belt. The study area is located in the west of Hormozgan Province and on the Gavbandi highland. This field is one of the important gas production anticlines in the SW Iran. To investigate the reservoir quality of the Kangan Formation in these wells, 163 microscopic thin sections were prep...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001